Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes
نویسندگان
چکیده
The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH(4)Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.
منابع مشابه
Determinants of pH-Dependent Modulation of Translocation in Dermonecrotic G-Protein-Deamidating Toxins
Cytotoxic necrotizing factors from E. coli (CNF1, CNF2) and Yersinia (CNFy)share N-terminal sequence similarity with Pasteurella multocida toxin (PMT). This common N-terminal region harbors the receptor-binding and translocation domains that mediate uptake and delivery of the C-terminal catalytic cargo domains into the host cytosol. Subtle variations in the N-terminal ~500 amino acids of CNFs a...
متن کاملPasteurella multocida toxin as a transporter of non-cell-permeating proteins.
The protein toxin Pasteurella multocida toxin (PMT) is the causative agent of atrophic rhinitis in pigs, leading to atrophy of the nasal turbinate bones by affecting osteoblasts and osteoclasts. The mechanism of PMT-induced intoxication is a deamidation of α-subunits of heterotrimeric G proteins, including Gαq, Gα13, and Gαi, thereby causing persistent activation of the G proteins. Here we util...
متن کاملSelective translocation of the A chain of diphtheria toxin across the membrane of purified endosomes.
Translocation is a necessary and rate-limiting step for diphtheria toxin (DT) cytotoxicity. We have reconstituted DT translocation in a cell-free system using endosomes purified from lymphocytes and have demonstrated this using two different probe/cell systems, which provided identical results: 125I-DT/human CEM cells and 125I-transferrin-DT/mouse BW cells. The cell-free DT translocation proces...
متن کاملReduced pH causes structural changes in the potent mitogenic toxin of Pasteurella multocida.
Pasteurella multocida toxin is a potent mitogen that is believed to act intracellularly. On transverse urea gradient gels at pH 8.0 the toxin displayed one major unfolding transition at 4 M urea. However, at pH 6.1 the unfolding transition took place at 3.5 M urea. Circular dichroism spectra also indicated that a structural change took place at acidic pH. In addition it was found that the toxin...
متن کاملProtection of Pasteurella multocida dermonecrotic toxin-challenged rats by toxoid-induced antibody.
Two different doses of glutaraldehyde-treated Pasteurella multocida dermonecrotic toxin (PMDT) were used to immunize rats. Rats developed serum IgG antibodies specific for native PMDT, and IgG titers increased with dose and number of toxoid immunizations. Survival rates in both active immunization and passive serum neutralization experiments were dependent on dose of toxoid vaccination and seru...
متن کامل